Vaughn Iverson

Within each liter of seawater, how do a billion individual microbial cells compete for available resources, interact with one another, shape and respond to environmental change, and ultimately reproduce or perish?

Vaughn Iverson, Ph.D. vsi at

Senior Research Scientist, Center for Environmental Genomics, School of Oceanography
Senior Fellow, eScience Institute

Research Interests

I am interested in observing the complex interactions occurring within natural communities of microorganisms; as one would find in virtually any water sample taken from the environment. The approach I am developing uses biological sensing techniques capable of inferring the behaviors and interactions within natural microbial communities by identifying and quantifying genes and proteins used by specific members of the community.

Microorganisms in the environment are always found living in association with one another. For example, wherever there is a natural population of phytoplankton (e.g. diatoms), associated bacteria will also be present. The traditional way to study microbes is in the laboratory, by isolating and maintaining pure cell cultures which can be used to perform controlled experiments. This reductionist approach is a valuable tool to shed light on the roles these organisms may individually play in an ecosystem.

However, this approach is limited because a large majority of microscopic organisms we can detect in the environment are resistant to growth in a pure laboratory culture, which excludes most of the actual participants in natural ecosystems from study using this method. Even for those "model organisms" that do happen to grow under sterile laboratory conditions, our ability to observe their natural behaviors is limited by monoculture, which is simplified and skewed by the absence of interactions with the natural microbial communities within which these organisms have evolved.

Biological research has been revolutionized over the past several decades by the sequencing of whole genomes for many cultured organisms. Biological oceanography is being similarly transformed by the flood of genomic data now available for a wide variety of isolated marine microbes. Leveraging this information, together with astounding recent advances in massively parallel DNA sequencing technology, I am developing computational methods that allow us to effectively analyze data resulting from simultaneously sequencing the combined DNA of all members of a natural microbial community.

From these analyses, we can characterize the community composition (revealing who's there), while also reconstructing very long stretches of DNA sequence (revealing what they might be doing). These DNA sequences are often sufficient to produce whole genomes representing uncultured, poorly understood groups of organisms. Genome sequence allows us to reveal previously unknown roles such organisms play in maintaining healthy marine ecosystems, and may ultimately provide us with the necessary clues to isolate them into culture, further extending the reach of traditional laboratory methods.




Recent Honors




Conference Talks


Open Source Software


U.S. Patents (20)